Class 12 RD Sharma Solutions – Chapter 7 Adjoint and Inverse of a Matrix – Exercise 7.1 | Set 1

Question 1. Find the adjoint of the following matrices:

Verify that (adj A)A = |A|I = A(adj A) for the above matrices:

(i)  

Solution:

Here, A = 

Cofactors of A are:

C11 = 4      C12 = -2

C21 = -5    C22 = -3

adj A =

(adj A) = 

To Prove, (adj A)A = |A|I = A(adj A)

(adj A)A =  

|A|I =  =  

A(adj A) = 

Therefore, (adj A)A = |A|I = A(adj A)

Hence Proved

(ii) 

Solution:

Here, A = 

Cofactors of A are:

C11 = d      C12 = -c

C21 = -b    C22 = a

(adj A) =

To Prove, (adj A)A = |A|I = A(adj A)

(adj A)A = 

|A|I =

A(adj A) =

Therefore, (adj A)A = |A|I = A(adj A)

Hence Proved

(iii) 

Solution:

Here, A = 

Cofactors of A are:

C11 = cos Ξ±     C12 = -sin Ξ±

C21 = -sin Ξ±    C22 = cos Ξ±

(adj A) =

=

To Prove, (adj A)A = |A|I = A(adj A)

(adj A)A = 

=

=

|A|I = 

=

=

=

A(adj A) = 

=

=

Therefore, (adj A)A = |A|I = A(adj A) 

Hence Proved

(iv) 

Solution:

Here, A = 

Cofactors of A are:

C11 = 1    C12 = -(-tan Ξ±/2) = tan Ξ±/2

C21 = -tan Ξ±/2    C22 = 1

adj A = 

=

To Prove, (adj A)A = |A|I = A(adj A)

|A| = 

= 1 + tan2 Ξ±/2

= sec2Ξ±/2

(adj)A = 

=

=

|A|I = (sec2Ξ±/2)

=

A(adj A) = 

=

=

Therefore, (adj A)A = |A|I = A(adj A) 

Hence Proved

Question 2. Compute the adjoint of each of the following matrices:

Verify that (adj A)A = |A|I = A(adj A) for the above matrices:

(i) 

Solution:

Here, A = 

Cofactors of A are

C11 =  = -3

C21 =  = 2

C31 =  = 2

C12 =  = 2

C22 = =-3

C32 =  = 2

C13 =  = 2

C23 =  = 2

C33 =  = -3

adj A = 

=

=

To Prove, (adj A)A = |A|I = A(adj A)

|A| = -3 + 4 + 4 = 5

(adj A)A = 

|A|I= (5) = 

A(adj A) = 

Therefore, (adj A)A = |A|I = A(adj A)  

Hence Proved

(ii) 

Solution:

Here, A = 

Cofactors of A are

C11 =  = 2

C12 =  = -3

C13 =  = 5

C21 =  = 3

C22 =  = 6

C23 =  = -3

C31 =  = -13

C32 =  = 9

C33 =  = -1

adj A = 

=

To Prove, (adj A)A = |A|I = A(adj A)

|A| = 1(3 – 1) – 2(2 + 1) + 5(2 + 3)

= 2 – 6 + 25 = 21

(adj A)A = 

|A|I = (21)

A(adj A)

Therefore, (adj A)A = |A|I = A(adj A)  

Hence Proved

(iii) 

Solution:

Here, A = 

Cofactors of A are

C11 =  = -22

C12 = – = 4

C13 =  = 16

C21 = – = 11

C22 =  = -2

C23 = – = -8

C31 =  = -11

C32 = – = 2

C33 =  = 8

adj A = 

To Prove, (adj A)A = |A|I = A(adj A)

|A| = 2(-2 – 20) + 1(-4 – 0) + 3(16 – 0)

= -44 – 4 + 48 = 0

(adj A)A = 

|A|I = 

A(adj A) = 

Therefore, (adj A)A = |A|I = A(adj A)  

Hence Proved

(iv) 

Solution:

Here, A =  

Cofactors of the A are

C11 =  = 3

C12 = – = -15

C13 =  = 4

C21 =  = -1

C22 =  = 7

C23 =  = -2

C31 =  = 1

C32 =  = -5

C33 = = 2

adj A = 

=

To Prove, (adj A)A = |A|I = A(adj A)

|A| = 2(3 – 0) – 0(15 – 0) – 1(5 – 1)

= 6 – 4 = 2

(adj A)A = 

|A|I = (2)

A (adj A) = 

Therefore, (adj A)A = |A|I = A(adj A)  

Hence Proved

Question 3. For the matrix A =, show that A(adj A) = O.

 Solution:

Cofactor of A are, 

C11 = 30    C12 = -20    C13 = -50

C21 = 12    C22 = -8     C23 = -20

C31 = -3    C32 = 2       C33 = 5  

adj A = 

=

A(adj A) = 

=

= 0

Hence Proved

Question 4. If A =, show that adj A = A. 

Solution:

Here, A =

Cofactor of A are,

C11 = -4    C12 = 1     C13 = 4

C21 = -3    C22 = 0    C23 = 4

C31 = 4    C32 = 4     C33 = 3  

adj A = 

=

Therefore, adj A = A

Question 5. If A = , show that adj A = 3AT.

Solution:

Here, A = 

Cofactor of A are,

C11 = -3    C12 = -6    C13 = -6

C21 = 6    C22 = 3      C23 = -6

C31 = 6    C32 = -6    C33 = 3  

adj A = 

=

AT=

Now, 3AT = 3 =

adj A = 3.A

Hence Proved

Question 6. Find A(adj A) for the matrix A =.

Solution:

Here, A =

Cofactor of A are,

C11 = 9    C12 = 4    C13 = 8

C21 = 19    C22 = 14    C23 = 3

C31 = -4    C32 = 1    C33 = 2

adj A = 

=

=

A(adj A) = 

= 25

= 25I3

Question 7. Find the inverse of each of the following matrices:

(i) 

Solution:

Here, A = 

|A| = cos2ΞΈ + sin2ΞΈ = 1

Hence, inverse of A exist 

Cofactors of A are,

Cofactor of A are,

C11 = cos ΞΈ     C12 = sin ΞΈ

C21 = -sin ΞΈ    C22 = cos ΞΈ

adj A = 

A-1 = 1/|A|. adj A

=1/1.   

(ii)     

Solution:

Here, A =   

|A| = -1

Hence, inverse of A exist  

Cofactor of A are,

C11 = 0      C12 = -1

C21 = -1    C22 = 0

adj A = 

A-1 = 1/|A|. adj A

(iii) 

Solution:

Here, A =       

|A| = a(1 + bc)/a – bc = 1 + bc – bc = 1

Hence, inverse of A exists.  

Cofactor of A are,

C11 = (1 + bc)/a     C12 = -c

C21 = -b                 C22 = a

adj A =

A-1 = 1/|A|. adj A

= 1/1 

(iv) 

Solution:

Here, A = 

|A| = 2 + 15 = 17

Hence, inverse of A exists.  

Cofactor of A are,

C11 = 1      C12 = 3

C21 = -5   C22 = 2

adj A = 

=       

A-1 = 1/|A|. adj A

Question 8. Find the inverse of each of the following matrices.

(i) 

Solution:

Here, A =

|A| = 1(6 – 1) – 2(4 – 3) + 3(2 – 9)

= 5 – 2 – 21 = -18

Therefore, inverse of A exists

Cofactors of A are:

C11 = 5    C12 = -1      C13 = -7

C21 = -1    C22 = -7    C23 = 5

C31 = -7    C32 = 5     C33 = -1  

adj A = 

A-1 = 1/|A|. adj A

Hence, A-1

=  

(ii) 

Solution:

Here, A = 

|A| = 1(1 + 3) – 2(-1 + 2) + 5(3 + 2)

= 4 – 2 – 25 = 27

Therefore, inverse of A exists

Cofactors of A are:

C11 = 4        C12 = -1     C13 = 5

C21 = -17    C22 = -11   C23 = 1

C31 = 3       C32 = 6      C33 = -3

adj A = 

A-1 = 1/|A|. adj A

Hence, A-1

=   

(iii) 

Solution:

Here, A =

|A| = 2(4 – 1) – (-1)(-2 + 1) + 1(1 – 2)

= 6 – 1 – 1 = 4

Therefore, inverse of A exists

Cofactors of A are:

C11 = 3    C12 = 1      C13 = -1

C21 = 1    C22 = 3     C23 = 1

C31 = -1    C32 = 1    C33 = 3

adj A = 

A-1 = 1/|A|. adj A

Hence, A-1

=    

(iv) 

Solution:

Here, A =

|A| = 2(3 – 0) – 0 + 1(5)

= 6 – 5 = 1

Therefore, inverse of A exists

Cofactors of A are:

C11 = 3     C12 = -15     C13 = 5

C21 = -1   C22 = 6        C23 = -2

C31 = 1     C32 = -5      C33 = 2

adj A = 

A-1 = 1/|A|. adj A

Hence, A-1

=   

(v) 

Solution:

Here, A = 

|A| = 0 – 1(16 – 12) – 1(-12 + 9)

= -4 + 3 = -1

Therefore, inverse of A exists

Cofactors of A are:

C11 = 0    C12 = -4    C13 = -3

C21 = -1   C22 = 3     C23 = 3

C31 = 1    C32 = -4    C33 = -4

adj A = 

A-1 = 1/|A|. adj A

Hence, A-1

=          

(vi) 

Solution:

Here, A = 

|A| = 0 – 0 – 1(-12 + 8)

= -1(-4) = 4

Therefore, inverse of A exists

Cofactors of A are:

C11 = -8    C12 = 11      C13 = -4

C21 = 4     C22 = -2     C23 = 0

C31 = 4    C32 = -3      C33 = 0

adj A = 

A-1 = 1/|A|. adj A

Hence, A-1

=   

(vii) 

Solution:

Here, A = 

|A| = -cos2Ξ± – sin2Ξ±

= -(cos2Ξ± + sin2Ξ±) = -1

Therefore, inverse of A exists

Cofactors of A are:  

C11 = -1     C12 = 0           C13 = -0

C21 = 0      C22 = -cosΞ±   C23 = -sinΞ±

C31 = 0      C32 = -sinΞ±     C33 = cosΞ±

adj A = 

A-1 = 1/|A|. adj A

Hence, A-1

=       

Question 9. (i) 

Solution:

Here, A = 

|A| = 1(16 – 9) – 3(4 – 3) + 3(3 – 4)

= 7 – 3 – 3 = 1

Therefore, inverse of A exists

Cofactors of A are:

C11 = 7       C12 = -1   C13 = -1

C21 = -3    C22 = 1     C23 = 0

C31 = -3    C32 = 0    C33 = 1

adj A = 

A-1 = 1/|A|. adj A

Hence, A-1 = 1/1

=

To verify A-1A = 

=         

(ii) 

Solution:

Here, A = 

|A| = 2(8 – 7) – 3(6 – 3) + 1(21 – 12)

= 2 – 3(3) + 1(9) = 2

Therefore, inverse of A exists

Cofactors of A are:

C11 = 1      C12 = -3    C13 = 9

C21 = 1     C22 = 1      C23 = -5

C31 = -1   C32 = 1      C33 = -1

adj A = 

A-1 = 1/|A|. adj A

Hence, A-1

To verify A-1A = 

=