Adding and Subtracting Radicals

In mathematics, a radical is defined as an expression with a root. The term β€œradical” originated from the Latin word β€œradix”, which means β€œroot”. A radical is an expression that involves any kind of roots, such as a square root, a cube root, a fourth root, or an nth root. A root is considered to be a square root if the index or degree of the radical is not mentioned. A radical has three components, namely, an index or degree, a radical symbol, and a radicand. The index number, or a degree of the radical, is the number written before it. Radicand is the number under the vinculum, where the vinculum is the horizontal line covering the number. β€œ(√)” is the radical symbol. For example, β€œ(n√x)” is read as β€œthe nth root of x.”

 

In the figure given above, β€œ3” is the co-efficient of the radical, β€œ5” is the index, β€œ8” is the radicand, and β€œ(√)” is the radical symbol. 

Some rules for solving Radicals

Product Rule: If β€œ(n√a)” and  β€œ(n√b)”are real numbers and n is a natural number, then 

n√(a Γ— b) = n√a Γ—  n√b, where a, b ∈ R, n ∈ N.

Quotient rule: If β€œ(n√a)” and  β€œ(n√b)”are real numbers and n is a natural number, then 

n√(a /b) = n√a /n√b,  where a, b ∈ R, n ∈ N, bβ‰ 0

Fractional exponent: If β€œ(n√a)” is a real number, n is a natural number and m is an integer, then,

n√(am) = a(m/n)

Addition and Subtraction of Radicals

The addition and subtraction of radical expressions are similar to the addition and subtraction of like terms. When two radicals have the same radicand and index, they are said to be similar radicals or like radicals. We cannot add or subtract β€œunlike” radical terms, i.e., radicals having different radicands. 

Let us consider another example to understand the concept better.

Example 1: Solve: [3√2 + 7√2]. 

Solution:

Here, 

Since the radicands are the same, so the radicals are like radicals.

That means we can add both terms.

So, 

[3√2 + 7√2] = (3 + 7)√2 

                    = 10√2.

Example 2: Solve 2√27 + 6√16 – 5√3.

Solution:

The given expression is 2√27 + 6√16 – 5√3.

Here, the radicands of the three terms are different. But the radicands can be simplified further.

2√(33) + 6√(42) + 5√3 = 2 Γ— 3√3 + 6 Γ— 4 – 5√3

                                    = 6√3 + 24 – 5√3

Now, we have like-radicals.

= 24 + (6 – 5)√3 = 24 + √3.

Hence, 

2√27 + 6√16 – 5√3 = 24 + √3.

Steps while adding or subtracting radicals:

In order to add or subtract radicals, they must be β€œlike radicals”. So, the coefficients of β€œlike radicals” are added or subtracted to add or subtract radicals.

  • First, break down the given radicals and then simplify each term.
  • Now, find the like-radicals.
  • Finally, add or subtract the like radicals by adding or subtracting their coefficients.

Example: Solve 21√2 + 10√5 βˆ’9√2 + 7√5.

Solution:

Given expression: 21√3 + 10√7 βˆ’9√3 + 7√7

The radicals are in their simplified form. So, identify the like-radicals.

= (21√3 – 9√3) + (10√7 + 7√7)

Now, add or subtract the coefficients of the like terms.

= 12√3 + 17√7

We cannot simplify any further as √3 and √7  are not like radicals since their radicands are different.

Hence, 21√3 + 10√7 βˆ’9√3 + 7√7 = 12√3 + 17√7.

Sample Problems

Problem 1: Solve 6√27 βˆ’ 2√12 + √48.

Solution:

Given expression: 6√27 βˆ’ 2√12 + √48

= 6√(3 Γ— 3 Γ— 3) βˆ’ 2√(2 Γ— 2 Γ— 3) + √(4 Γ— 4 Γ— 3)

= 6 [√(3Γ—3) Γ— √3] βˆ’ 2[√(2 Γ— 2) Γ— √3] + √(4 Γ— 4) Γ— √3  {Since, n√(a Γ— b)= n√a Γ— n√b}

= 6 Γ— 3√3 βˆ’ 2 Γ— 2√3 + 4√3

= 18√3 βˆ’ 4√3 + 4√3

= 18√3

Thus, 6√27 – 2√12 + √48 = 18√3.

Problem 2: Solve:  2 3√162 βˆ’ 5 3√40 + 3 3√48 +7 3√135

Solution:

Given expression: 2 3√162 βˆ’ 5 3√40 + 3 3√48 + 7 3√135

= 2 3√(27 Γ— 6) βˆ’ 5 3√(8 Γ— 5) + 3 3√(8 Γ— 6) + 7 3√(27 Γ— 5)

= 2 [3√27 Γ— 3√6] – 5[3√8 Γ— 3√5] + 3[3√8 Γ— 3√6] + 7[3√27 Γ— 3√5]  {Since, n√(a Γ— b)= n√a Γ— n√b}

= (2 Γ— 3 Γ— 3√6) βˆ’ (5 Γ— 2 Γ— 3√5) + (3 Γ— 2 Γ— 3√6) + (7 Γ— 3 Γ— 3√5)

= 6 3√6 βˆ’ 10 3√5 + 6 3√6 + 21 3√5

= 12 3√6 + 11 3√5

Hence, 2 3√162 βˆ’ 5 3√40 + 3 3√48 +7 3√135 = 12 3√6 + 11 3√5

Problem 3: Solve: 4√(x6y) + 7√(xy2) βˆ’ √(y2x).

Solution:

Given expression: 4√(x6y) + 7√(xy2) βˆ’ √(y2x) 

= 4 [√x6 Γ— √y] + 7[√x Γ— √y2] βˆ’ [√y2 Γ— √x]    {Since, n√(a Γ— b) = n√a Γ— n√b}

= 4 [√(x3)2 Γ— √y] + 7[√x Γ— y] βˆ’[√y2 Γ— √x]    {Since, amn = (am)n}

= 4x3√y + 7y√x βˆ’ y√x

= 4x3√y + 6y√x

Thus, 4√(x6y) + 7√(xy2) βˆ’ √(y8x) = 4x3√y + 6y√x.

Problem 4: Solve: 13√11 βˆ’12√17 βˆ’ 22√11 + 20√17 + 18√11.

Solution: 

Given expression: 13√11 βˆ’12√17 βˆ’ 22√11 + 20√17 + 18√11

= (13√11 – 22√11 + 18√11) + (-12√17 + 20√17)

= (31√11 – 22√11) + (8√17)

= 9√11 + 8√17.

Thus, 13√11 βˆ’12√17 βˆ’ 22√11 + 20√17 + 18√11 = 9√11 + 8√17.

Problem 5: Solve:  2[√a + 5√(3b)]βˆ’ 8[√a – 11√(3b)] + 14[3√a + 2√(3b)]

Solution:

Given expression: 2[√a + 5√(3b)]βˆ’ 8[√a – 11√(3b)] + 14[3√a – 2√(3b)]

= 2√a + 10√(3b) -8√a + 88√(3b) + 42√a – 28√(3b)

= [2√a – 8√a + 42√a] + [10√(3b) + 88√(3b) – 28√(3b)]

= 36√a + 70√(3b)

Thus, 2[√a + 5√(3b)]βˆ’ 8[√a – 11√(3b)] + 14[3√a + 2√(3b)] =  36√a + 70√(3b).

Problem 6: Solve: βˆ’11 5√(2xy) + 23 5√(2xy) βˆ’ 5√(64xy) + 15 5√(2xy).

Solution:

Given expression: βˆ’11 5√(2xy) + 23 5√(2xy) βˆ’ 5√(64xy) + 15 5√(2xy)

= βˆ’11 5√(2xy) + 23 5√(2xy) βˆ’ 5√(32 Γ— 2xy) +15 5√(2xy)

= βˆ’11 5√(2xy) βˆ’ 5√32 Γ— 5√(2xy) + 23 5√(2xy) + 15 5√(2xy)

= βˆ’11 5√(2xy) βˆ’ 2 5√(2xy) + 38 5√(2xy)

= βˆ’13 5√(2xy) + 38 5√(2xy) 

= 25 5√(2xy)

Hence, βˆ’11 5√(2xy) + 23 5√(2xy) βˆ’ 5√(64xy) + 15 5√(2xy) = 25 5√(2xy)