C Program to Implement Binary Tree

The below program demonstrates all the basic operations on a binary search tree: creation, searching, traversal, insertion and deletion in C.

C
// C program to to implement binary tree

#include <stdio.h>
#include <stdlib.h>

// Define a structure for tree nodes
typedef struct Node {
    int data;
    struct Node* left;
    struct Node* right;
} Node;

// Function to create a new node
Node* createNode(int data)
{
    Node* newNode = (Node*)malloc(sizeof(Node));
    newNode->data = data;
    newNode->left = NULL;
    newNode->right = NULL;
    return newNode;
}

// Function for inserting a node in a binary tree
void insert(Node** root, int data)
{
    Node* newNode = createNode(data);
    if (*root == NULL) {
        *root = newNode;
        return;
    }

    // Level order traversal to find the appropriate place
    // for insertion
    Node* temp;
    Node* queue[100];
    int front = -1, rear = -1;
    queue[++rear] = *root;

    while (front != rear) {
        temp = queue[++front];

        //  Insert new node as the left child
        if (temp->left == NULL) {
            temp->left = newNode;
            return;
        }
        // if left child is not missing push it to the queue
        else {
            queue[++rear] = temp->left;
        }
        // Insert new node as the right child
        if (temp->right == NULL) {
            temp->right = newNode;
            return;
        }
        // if right child is not missing push it to the
        // queue
        else {
            queue[++rear] = temp->right;
        }
    }
}

// Function to perform level order traversal to find the
// deepest rightmost node
Node* getDeepestRightmostNode(Node* root)
{
    Node* temp;
    Node* queue[100];
    int front = -1, rear = -1;
    queue[++rear] = root;

    while (front != rear) {
        temp = queue[++front];

        if (temp->left != NULL) {
            queue[++rear] = temp->left;
        }

        if (temp->right != NULL) {
            queue[++rear] = temp->right;
        }
    }
    return temp;
}

// Function for deleting deepest rightmost node in a binary
// tree
void deleteDeepestRightmostNode(Node* root, Node* dNode)
{
    Node* temp;
    Node* queue[100];
    int front = -1, rear = -1;
    queue[++rear] = root;

    while (front != rear) {
        temp = queue[++front];

        if (temp == dNode) {
            temp = NULL;
            free(dNode);
            return;
        }

        if (temp->right != NULL) {
            if (temp->right == dNode) {
                temp->right = NULL;
                free(dNode);
                return;
            }
            else {
                queue[++rear] = temp->right;
            }
        }

        if (temp->left != NULL) {
            if (temp->left == dNode) {
                temp->left = NULL;
                free(dNode);
                return;
            }
            else {
                queue[++rear] = temp->left;
            }
        }
    }
}

// Function to delete a node in the binary tree
void delete (Node** root, int data)
{
    if (*root == NULL) {
        printf("Tree is empty.\n");
        return;
    }

    if ((*root)->left == NULL && (*root)->right == NULL) {
        if ((*root)->data == data) {
            free(*root);
            *root = NULL;
            return;
        }
        else {
            printf("Node not found.\n");
            return;
        }
    }

    Node* temp;
    Node* queue[100];
    int front = -1, rear = -1;
    queue[++rear] = *root;
    Node* keyNode = NULL;

    while (front != rear) {
        temp = queue[++front];

        if (temp->data == data) {
            keyNode = temp;
        }

        if (temp->left != NULL) {
            queue[++rear] = temp->left;
        }

        if (temp->right != NULL) {
            queue[++rear] = temp->right;
        }
    }

    if (keyNode != NULL) {
        Node* deepestNode = getDeepestRightmostNode(*root);
        keyNode->data = deepestNode->data;
        deleteDeepestRightmostNode(*root, deepestNode);
    }
    else {
        printf("Node not found.\n");
    }
}

// Function to search for a node in the binary tree
Node* search(Node* root, int data)
{
    if (root == NULL) {
        return NULL;
    }

    Node* temp;
    Node* queue[100];
    int front = -1, rear = -1;
    queue[++rear] = root;

    while (front != rear) {
        temp = queue[++front];

        if (temp->data == data) {
            return temp;
        }

        if (temp->left != NULL) {
            queue[++rear] = temp->left;
        }

        if (temp->right != NULL) {
            queue[++rear] = temp->right;
        }
    }
    return NULL;
}

// function to perform inorder traversal in a binary tree
void inorderTraversal(Node* root)
{
    if (root == NULL) {
        return;
    }

    inorderTraversal(root->left);
    printf("%d ", root->data);
    inorderTraversal(root->right);
}

int main()
{
    Node* root = NULL;

    // Inserting nodes
    insert(&root, 20);
    insert(&root, 30);
    insert(&root, 40);
    insert(&root, 50);
    insert(&root, 60);
    insert(&root, 70);
    insert(&root, 80);

    // Inorder traversal
    printf("Inorder traversal of the given Binary Search "
           "Tree is: ");
    inorderTraversal(root);
    printf("\n");

    // Deleting a node
    int deleteValue = 20;
    delete (&root, deleteValue);
    printf("After deletion of %d: ", deleteValue);
    inorderTraversal(root);
    printf("\n");

    // Inserting a new node
    int insertValue = 25;
    insert(&root, insertValue);
    printf("After insertion of %d: ", insertValue);
    inorderTraversal(root);
    printf("\n");

    // Searching for a node
    int target = 25;
    Node* searchResult = search(root, target);
    if (searchResult != NULL) {
        printf("Node %d found in the BST.\n", target);
    }
    else {
        printf("Node %d not found in the BST.\n", target);
    }

    return 0;
}

Output
Inorder traversal of the given Binary Search Tree is: 50 30 60 20 70 40 80 
After deletion of 20: 50 30 60 80 70 40 
After insertion of 25: 50 30 60 80 70 40 25 
Node 25 found in the BST.

Time Complexity: O(N), here N is the number of nodes in a binary tree.
Auxilliary Space: O(N)

Binary Tree in C

A binary tree is a non-linear hierarchical data structure in which each node has at most two children known as the left child and the right child. It can be visualized as a hierarchical structure where the topmost node is called the root node and the nodes at the bottom are called leaf nodes or leaves.

In this article, we will learn the basics of binary trees, types of binary trees, basic operations that can be performed on binary trees as well as applications, advantages, and disadvantages of binary trees in C.

Similar Reads

Representation of Binary Tree

Binary Tree Representation...

Basic Operations on Binary Tree in C

The following are the basics operations that can performed on a binary tree:...

C Program to Implement Binary Tree

The below program demonstrates all the basic operations on a binary search tree: creation, searching, traversal, insertion and deletion in C....

Types of Binary Trees in C

Binary trees can be of many types depending on the parameter we took for the classification of the trees. The following are the types of binary trees:...

Applications of Binary Trees

Binary tree are the versatile data structure widely used in the various applications due to the hierarchical nature and efficient performance in the certain operations. Following are some applications of the binary tree:...

Frequently Asked Questions on C Binary Tree

What is a binary tree?...