Implementation of Stack using Singly Linked List

To implement a stack using the singly linked list concept, all the singly linked list operations should be performed based on Stack operations LIFO(last in first out) and with the help of that knowledge, we are going to implement a stack using a singly linked list. 

So we need to follow a simple rule in the implementation of a stack which is last in first out and all the operations can be performed with the help of a top variable. Let us learn how to perform Pop, Push, Peek, and Display operations in the following article:

In the stack Implementation, a stack contains a top pointer. which is the “head” of the stack where pushing and popping items happens at the head of the list. The first node has a null in the link field and second node-link has the first node address in the link field and so on and the last node address is in the “top” pointer.

The main advantage of using a linked list over arrays is that it is possible to implement a stack that can shrink or grow as much as needed. Using an array will put a restriction on the maximum capacity of the array which can lead to stack overflow. Here each new node will be dynamically allocated. so overflow is not possible.

Push Operation:

  • Initialise a node
  • Update the value of that node by data i.e. node->data = data
  • Now link this node to the top of the linked list
  • And update top pointer to the current node

Pop Operation:

  • First Check whether there is any node present in the linked list or not, if not then return
  • Otherwise make pointer let say temp to the top node and move forward the top node by 1 step
  • Now free this temp node

Peek Operation:

  • Check if there is any node present or not, if not then return.
  • Otherwise return the value of top node of the linked list

Display Operation:

  • Take a temp node and initialize it with top pointer 
  • Now start traversing temp till it encounters NULL
  • Simultaneously print the value of the temp node

Stack Notes for GATE Exam [2024]

Stacks, a fundamental data structure in computer science, are crucial for understanding algorithmic paradigms and solving complex computational problems. As candidates gear up for the GATE Exam 2024, a solid grasp of stack concepts is indispensable. These notes are designed to provide a concise yet comprehensive overview of stacks, covering key topics that are likely to be assessed in the GATE examination.

Table of Content

  • Introduction to Stack:
  • LIFO (Last In First Out) in Stack:
  • Basic Operations on Stack
  • Implementation of Stack using Singly Linked List:
  • Applications, Advantages and Disadvantages of Stack:
  • Infix to Postfix Operation in Stack:
  • Postfix Evaluation using Stack:
  • Towers of Hanoi using Stack:
  • Fibonaaci Series using Stack:
  • Previously Asked GATE Questions on Stack:

Similar Reads

Introduction to Stack:

A stack is a linear data structure in which the insertion of a new element and removal of an existing element takes place at the same end represented as the top of the stack....

LIFO (Last In First Out) in Stack:

This strategy states that the element that is inserted last will come out first. You can take a pile of plates kept on top of each other as a real-life example. The plate which we put last is on the top and since we remove the plate that is at the top, we can say that the plate that was put last comes out first....

Basic Operations on Stack

In order to make manipulations in a stack, certain operations are provided to us....

Implementation of Stack using Singly Linked List:

To implement a stack using the singly linked list concept, all the singly linked list operations should be performed based on Stack operations LIFO(last in first out) and with the help of that knowledge, we are going to implement a stack using a singly linked list....

Applications, Advantages and Disadvantages of Stack:

Application of Stack Data Structure:...

Infix to Postfix Operation in Stack:

To convert infix expression to postfix expression, use the stack data structure. Scan the infix expression from left to right. Whenever we get an operand, add it to the postfix expression and if we get an operator or parenthesis add it to the stack by maintaining their precedence....

Postfix Evaluation using Stack:

To evaluate a postfix expression we can use a stack....

Towers of Hanoi using Stack:

Tower of Hanoi is a mathematical puzzle where we have three rods (A, B, and C) and N disks. Initially, all the disks are stacked in decreasing value of diameter i.e., the smallest disk is placed on the top and they are on rod A. The objective of the puzzle is to move the entire stack to another rod (here considered C), obeying the following simple rules:...

Fibonaaci Series using Stack:

The Fibonacci numbers are the numbers in the following integer sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …….....

Previously Asked GATE Questions on Stack:

Question 1:...