Queue

Queue is a linear data structure that follows a particular order in which the operations are performed. The order is First In First Out(FIFO) i.e. the data item stored first will be accessed first. In this, entering and retrieving data is not done from only one end. An example of a queue is any queue of consumers for a resource where the consumer that came first is served first. Different operations are performed on a Queue like Reversing a Queue (with or without using recursion), Reversing the first K elements of a Queue, etc. A few basic operations performed In Queue are enqueue, dequeue, front, rear, etc.

Queue

Characteristics of a Queue: 

The queue has various different characteristics which are as follows:

  • The queue is a FIFO (First In First Out) structure.
  • To remove the last element of the Queue, all the elements inserted before the new element in the queue must be removed.
  • A queue is an ordered list of elements of similar data types.

Applications of Queue: 

Different applications of Queue are as follows:

  • Queue is used for handling website traffic.
  • It helps to maintain the playlist in media players.
  • Queue is used in operating systems for handling interrupts.
  • It helps in serving requests on a single shared resource, like a printer, CPU task scheduling, etc.
  • It is used in the asynchronous transfer of data e.g. pipes, file IO, and sockets.
  •  Queues are used for job scheduling in the operating system.
  • In social media to upload multiple photos or videos queue is used.
  • To send an e-mail queue data structure is used.
  • To handle website traffic at a time queues are used.
  • In Windows operating system, to switch multiple applications.

Operation performed on queue:

A queue is a linear data structure that implements the First-In-First-Out (FIFO) principle. Here are some common operations performed on queues:

  • Enqueue: Elements can be added to the back of the queue, adding a new element to the end of the queue.
  • Dequeue: The front element can be removed from the queue by performing a dequeue operation, effectively removing the first element that was added to the queue.
  • Peek: The front element can be inspected without removing it from the queue using a peek operation.
  • IsEmpty: A check can be made to determine if the queue is empty.
  • Size: The number of elements in the queue can be determined using a size operation.

These are some of the most common operations performed on queues. The specific operations and algorithms used may vary based on the requirements of the problem and the programming language used. Queues are commonly used in applications such as scheduling tasks, managing communication between processes, and many others.

Real-Life Applications of Queue: 

  • A real-world example of a queue is a single-lane one-way road, where the vehicle that enters first will exit first. 
  • A more real-world example can be seen in the queue at the ticket windows.
  • A cashier line in a store is also an example of a queue.
  • People on an escalator 

Want to get started with Queue? You can try out our curated articles and lists for the best practice:

Data Structure Types, Classifications and Applications

Similar Reads

What is Data Structure:

A data structure is a storage that is used to store and organize data. It is a way of arranging data on a computer so that it can be accessed and updated efficiently....

How Data Structure varies from Data Type:

We already have learned about data structure. Many times, what happens is that people get confused between data type and data structure. So let’s see a few differences between data type and data structure to make it clear....

Classification of Data Structure:

Data structure has many different uses in our daily life. There are many different data structures that are used to solve different mathematical and logical problems. By using data structure, one can organize and process a very large amount of data in a relatively short period. Let’s look at different data structures that are used in different situations....

Need Of Data structure :

The structure of the data and the synthesis of the algorithm are relative to each other. Data presentation must be easy to understand so the developer, as well as the user, can make an efficient implementation of the operation.Data structures provide an easy way of organizing, retrieving, managing, and storing data.Here is a list of the needs for data....

Arrays:

An array is a linear data structure and it is a collection of items stored at contiguous memory locations. The idea is to store multiple items of the same type together in one place. It allows the processing of a large amount of data in a relatively short period. The first element of the array is indexed by a subscript of 0. There are different operations possible in an array, like Searching, Sorting, Inserting, Traversing, Reversing, and Deleting....

Linked list:

A linked list is a linear data structure in which elements are not stored at contiguous memory locations. The elements in a linked list are linked using pointers as shown in the below image:...

Stack:

Stack is a linear data structure that follows a particular order in which the operations are performed. The order is LIFO(Last in first out). Entering and retrieving data is possible from only one end. The entering and retrieving of data is also called push and pop operation in a stack. There are different operations possible in a stack like reversing a stack using recursion, Sorting, Deleting the middle element of a stack, etc....

Queue:

Queue is a linear data structure that follows a particular order in which the operations are performed. The order is First In First Out(FIFO) i.e. the data item stored first will be accessed first. In this, entering and retrieving data is not done from only one end. An example of a queue is any queue of consumers for a resource where the consumer that came first is served first. Different operations are performed on a Queue like Reversing a Queue (with or without using recursion), Reversing the first K elements of a Queue, etc. A few basic operations performed In Queue are enqueue, dequeue, front, rear, etc....

Tree:

A tree is a non-linear and hierarchical data structure where the elements are arranged in a tree-like structure. In a tree, the topmost node is called the root node. Each node contains some data, and data can be of any type. It consists of a central node, structural nodes, and sub-nodes which are connected via edges. Different tree data structures allow quicker and easier access to the data as it is a non-linear data structure. A tree has various terminologies like Node, Root, Edge, Height of a tree, Degree of a tree, etc....

Graph:

A graph is a non-linear data structure that consists of vertices (or nodes) and edges. It consists of a finite set of vertices and set of edges that connect a pair of nodes. The graph is used to solve the most challenging and complex programming problems. It has different terminologies which are Path, Degree, Adjacent vertices, Connected components, etc....

Conclusion

Although these are the most widely known and used data structures, there are some other forms of data structures as well which are used in Computer Science, such as policy-based data structures, etc. But no matter which data structure you choose, each one has its perks and disadvantages, without the knowledge of which, it can be very costly to choose the wrong type of data structure. So it is very important to understand the need of the situation, and then decide which kind of data structure suits best for the job....