Representation of Electronic Configuration

Electronic configuration of an atom is represented using a standardized notation system that indicates the distribution of electrons among the various atomic orbitals. Electronic Configurations are represented as follows:

  • Shell Designation: Each electron shell is represented by a number ‘n’, where n= 1, 2, 3,….. This number corresponds to the principal quantum number.
  • Subshell Designation: Each shell is further divided into different subshell that are represented using the notation of subshells (s, p, d, f).
  • Orbital Filling Order: Electrons are then filled in orbitals from lowest energy orbital to highest according to Aufbau Principal. According to this principle, electrons are filled in the following order: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p.
  • Electron Count: Number of electrons occupying each orbital is indicated by a superscript following the orbital designation. For example, 1s2 represents that 1s orbital contains 2 electrons.

Writing Electron Configuration

For Writing Electron Configuration of an element, we must know the basic information about the element like atomic number, no. of electrons, shells, etc. The electronic configuration is typically represented using the notation of subshells (s, p, d, f) and the number of electrons in each subshell. For example, the potassium element has atomic number 19. And has 19 electrons which will be placed in s and p sub-shell. 

The electronic configuration can be written as 1s2 2s2 2p6 3s2 3p6 4s1. Its 19 electrons can be divided into different shells in a manner,

  • K shell (n = 1) = 2,
  • L shell (n = 2) = 8,
  • M shell (n = 3) = 8, and
  • N shell (n = 4) = 1.

Electronic Configuration in Periods and Groups

Electronic Configuration is the arrangement of electrons in orbitals around an atomic nucleus. Electronic Configuration of a molecule refers to the distribution of electrons in various molecular orbitals. The number of electrons in bonding and antibonding molecular orbitals of a molecule or molecular ion can be calculated from its electronic configuration.

In this article, we will learn about Electronic Configuration, Electronic Configuration in Periods, and Electronic Configuration in Groups.

Table of Content

  • What is Electronic Configuration?
  • Electronic Configuration in Periods
  • Electronic Configuration in Groups
  • Electronic Configurations of First 20 Elements

Similar Reads

What is Electronic Configuration?

Electronic Configuration refers to the arrangement of electrons among the orbitals of an atom or molecule. Electronic configurations are typically produced by conventional notation (especially for elements having a relatively large atomic number). In such instances, a shortened or condensed notation may be employed instead of the normal notation. In shortened notation, the sequence of entirely filled subshells that correspond to a noble gas’s electronic configuration is replaced by the noble gas’s symbol in square brackets....

Electronic Configuration in Periods

Electronic configuration of the elements in periods can be found by using following points:...

Electronic Configuration in Groups

The outermost shells of elements in the same group have the same number of electrons, resulting in identical valence shell electrical configurations. As a result, the characteristics and chemistry of elements in the same group follow a similar pattern....

Filling of Atomic Orbitals

We fill the atomic orbital with the electrons in accordance with these three rules,...

Representation of Electronic Configuration

Electronic configuration of an atom is represented using a standardized notation system that indicates the distribution of electrons among the various atomic orbitals. Electronic Configurations are represented as follows:...

Electronic Configurations of First 20 Elements

The electronic configuration of the first twenty elements of the periodic table is shown in the table added below,...

Electronic Configuration: Frequently Asked Questions

What is Electronic Configuration of an Element?...