WLC Interface

The Cisco Wireless Controller provides the necessary connectivity through an internal logical interface. These interfaces must be configured with an IP address, subnet mask, default gateway, and Dynamic Host Configuration Protocol (DHCP) server. Each interface is then assigned a physical port and VLAN ID.

WLC PORTS (Physical Interfaces):

Some ports may or may not be present, depending on the WLC model. All WLCs have a console port and a distribution system port.

1. Redundancy Port: This port is used for deployment architectures that support High Availability (HA) when two WLCs are available. In this configuration, the Redundant Port acts as a physical connection between the two WLCs via an Ethernet cable. Role negotiation between primary and secondary controllers is done through redundant ports that are also used to synchronize configuration and operational data. Redundancy Port checks peer availability by sending a UDP keepalive message from the standby hot WLC to the active WLC every 100ms days. Finally, the redundant port IP address is always 169.254.xxx.xxx, which is the first two bytes.

2. Service Port: In the event of a network failure, the service port is used for system recovery and maintenance and for out-of-band management of the controller. Note that service ports do not support VLAN trunking or VLAN tagging and should be connected to access ports on the switch. Additionally, this may prevent the administrator from accessing the controller’s management interface (more on this later), so it is not recommended to connect the service port to his VLAN, which is the same as the wired client’s network.

3. SFP/Ethernet Distribution System Ports: The WLC’s most important port is the distribution system port. This is to connect internal logical interfaces (explained later) and wireless client traffic to the rest of the network. High-end WLCs, such as his WLC 5500 series mentioned earlier, are equipped with multiple of his SFP-based distribution system ports that allow an engineer to connect his WLC to his network, his backbone in a variety of ways. By using the right SFP, you can connect your fiber optic or ethernet copper interface to its SFP port. Low-end WLCs such as the WLC2504 and the older WLC2100 series only offer Ethernet ports as only a few access points are supported. For example, the WLC2125 has up to 8 FastEthernet ports and supports up to 25 access points, while the WLC2504 offers up to 4 Gigabit Ethernet ports and can support up to 75 access points.

Physical Infrastructure Connections of WLAN Components

The IETF Control and Provisioning of Wireless Access Points Protocol (CAPWAP) standard are used by Lightweight Cisco Access Points for the purpose of communicating with wireless controllers and other lightweight access points on your network.

Similar Reads

CAPWAP:

The functional design of the Cisco Unified Wireless Network solution, the Cisco Centralized WLAN Architecture, uses CAPWAP as its foundational protocol. It controls APs and WLANs, wraps and transmits WLAN client communications between APs and WLAN controllers, and manages and configures APs and WLANs (WLCs). The cornerstone of CAPWAP is the Lightweight Access Point Protocol (LWAPP), but Datagram Transport Layer Protection improves security (DTLS). CAPWAP, which makes use of the User Datagram Protocol (UDP), is compatible with both Internet Protocol Version 4 (IPv4) and Internet Protocol Version 6 (IPv6). The data transferred between the LAP and WLC is compressed using new IP packets by CAPWAP. Traffic that has been tunneled is subsequently switched or routed using the campus network....

Wireless Controller Port:

The physical connection to the switched network infrastructure exists through the wireless controller port. The device’s physical ports include controller ports.  The main physical controller ports are as follows:...

LAG:

Ports are aggregated by the controller through a Link Aggregation Group (LAG). The 802.3ad port aggregation standard is only partially implemented. All ports of the controller’s distribution system are combined into a single 802.3ad port channel, reducing the number of IP addresses required to configure the controller’s ports. LAG provides link redundancy between the two devices, doubling bandwidth and expanding port flexibility. A logical channel can be created by combining a number of physical ports under the control of the Link Aggregation Control Protocol (LACP), part of the IEEE specification (802.3az) (LAG). WLC Interface: Cisco Wireless Controller’s internal logic interface provides the necessary connectivity. These interfaces must be configured with an IP address, subnet mask, default gateway, and dynamic host....

WLC Interface:

The Cisco Wireless Controller provides the necessary connectivity through an internal logical interface. These interfaces must be configured with an IP address, subnet mask, default gateway, and Dynamic Host Configuration Protocol (DHCP) server. Each interface is then assigned a physical port and VLAN ID....

WLC PORTS (Logical Interfaces):

Understanding the function of each logical interface is essential to successfully installing and operating a Cisco WLC-based wireless network. The WLC’s logical interfaces are used for various tasks such as managing controllers, access points, user data, and managing wireless SSIDs broadcast by access points....

Distribution Port – Link Aggregation:

The 802.3ad port standard allows you to combine many distribution ports of all WLCs into one port. An administrator can do this to create a single comprehensive connection between the local switch and the WLC. For example, the WLC2504 has 4 Gigabit Ethernet ports and can be combined with adjacent switches to create a 4 Gigabit Ethernet connection with your wired network. To enable link aggregation, an EtherChannel must be set up on the local switch. WLC does not support Link Aggregation Control Protocol (LACP) or Cisco’s own Port Aggregation Protocol (PAgP), so it is important to set the switch to his LAG. Only one LAG group is supported per controller....

Conclusion:

The Cisco Wireless LAN Controller Interface was introduced in this article. We explored the functionality of all interfaces and ports on the WLC, including Ethernet distribution ports, service ports, redundancy ports, management interfaces, AP-manager interfaces, virtual interfaces, and dynamic interfaces....