Kinetic Theory of Gases Assumptions

There are several assumptions that were taken into account in order to develop the kinetic theory of gas which are stated as follows:

  • Every gas consists of molecules that are microscopic particles. 
  • There are uncountably large numbers of particles making up any Gas.
  • The size of the molecule also known as the molecular size is negligible as compared to the molecular distance between two molecules (which is approximately 10-9 m).
  • The speed of the molecules of a gas is very high generally and it can lie anywhere between 0 and infinity.
  • The molecule shape of gas is spherical, rigid, and elastic masses.
  • The mean free path is known as the mean of all free paths. The free path is defined as the distance covered by the molecules between their two successive collisions.
  • The number of collisions per unit volume always remains the same in gas and is a constant.
  • There is no force of attraction or repulsion acting between the gas molecules.
  • The force of gravitation is also negligible due to the fact that the molecules have a very very small mass and they travel at a very high speed.

Kinetic Theory of Gases

Kinetic Theory of Gases is a theoretical model which helps us understand the behavior of gases and their constituent particles. This theory suggests that gas is made up of a larger number of tiny particles which collide with each other and their surroundings and exchange kinetic energy between them. The kinetic theory of gases has various applications throughout physics, chemistry, and engineering and it is essential to understand many phenomena like diffusion, effusion, and Brownian motion.

In this article, we will learn about the assumptions of kinetic theory, its limitations, and others in detail.

Similar Reads

What is Kinetic Theory of Gases?

The kinetic theory of gases was introduced to explain the structure and composition of molecules with respect to submicroscopic particles which make up the gaseous matter around us. This theory talks about the increase in pressure due to the constant movement and collision of the submicroscopic particles. It also discusses other properties of a gas such as temperature, pressure, volume, viscosity, diffusion, thermal conductivity, etc. The theory develops a relationship between the microscopic particles and the macroscopic properties. The molecule of gas is always in constant motion and keeps colliding with each other and the walls of the container, in such a case, it is difficult as well important to learn the dynamics of the gases....

Kinetic Theory of Gases Assumptions

There are several assumptions that were taken into account in order to develop the kinetic theory of gas which are stated as follows:...

Postulates of Kinetic Theory of Gases

Based on the assumptions, the following Postulates of the Kinetic Theory of Gases are given:...

Kinetic Theory and Gas Pressure

The continuous bombardment of the gas molecules against the walls of the container results in an increase in gas pressure. According to the Kinetic theory of gases, the pressure at that point exerted by a gas molecule can be represented as,...

Gas Laws for Ideal Gas

If the gases are assumed to be ideal in nature, the following gas laws are applicable to them. The laws are defined to understand the ideal gases and their parameters like volume, pressure, etc. Let’s take a look at the laws,...

Non-Ideal Gas Behavior

Under low pressure and high temperature, it is presumed that all gases obey the ideal gas behavior and hence the gas laws. For the real gases, or during the study of real gases, the deviation from the ideal gas behavior is mostly pointed out. It involves talking about the wrong postulates defined for ideal gases that do not follow up in real gas behavior. Let’s take a look at them,...

Sample Problems on Kinetic Theory of Gases

Problem 1: A gas occupies 10 liters at a pressure of 30 mmHg. What will be the volume when the pressure is increased to 50 mmHg?...

FAQs on Kinetic Theory of Gases

Q1: What is Kinetic Theory of Gases?...